Silna sztuczna inteligencja będzie się uczyć na swoich błędach

0
68

Jednym z najgorętszych trendów na rynku technologicznym są rozwiązania wykorzystujące algorytmy uczenia maszynowego do usprawnienia działania systemów sztucznej inteligencji. Testuje się je na grach komputerowych, aby szkolić ich umiejętności kompetytywne. Wykorzystywane są w branży telewizyjnej do poprawiania jakości wyświetlanego obrazu, do usprawniania procesów przesyłu danych, a także do tworzenia nowych, innowacyjnych narzędzi do analizy danych. Jak przekonuje Mo Gawdat, były szef marki Google X, silna sztuczna inteligencja będzie w stanie uczyć się na swoich błędach, a w przyszłości pomoże rozwiązać m.in. problem zmian klimatycznych.

 

 

– Rozwój sztucznej inteligencji nie przypomina tradycyjnego programowania, gdzie każda linijka kodu zasadniczo mówi komputerowi, co dokładnie ma zrobić. Pokazujemy komputerowi wystarczająco dużo wzorców pozwalających na to, by zaprogramował się samodzielnie i wybierał sposoby na rozwiązanie problemów lub zmierzenie się z wyzwaniem. Tworzymy tzw. stronnicze algorytmy danych. Jeżeli chcemy, żeby nasza maszyna była najlepszym graczem w danej grze, pokażemy jej wzorce tylko tej gry, nie pokażemy jej innych gier czy innych aspektów życia – mówi agencji informacyjnej Newseria Innowacje Mo Gawdat, założyciel One Billion Happy.

Szeroko zakrojone badania nad wykorzystaniem algorytmów uczenia maszynowego w procesie doskonalenia sztucznej inteligencji prowadzi firma OpenAI, która testuje stronnicze algorytmy danych w oparciu o popularne gry wieloosobowe. Firma wyszkoliła od zera m.in. boty do gry Dota 2, aby te były w stanie podejmować niezależne decyzje, bazując wyłącznie na danych wizualnych wyświetlanych podczas rozgrywki. W wyniku wielomiesięcznych eksperymentów udało się wytrenować drużynę botów OpenAI Five i przetestować ją w starciu z zawodowymi graczami e-sportowymi. Zespół mistrzów uległ sztucznej inteligencji.

– W ciągu następnej dekady oczekujemy pojawienia się silnej sztucznej inteligencji, która pozwoli na to, żeby maszyna pozyskiwała informacje bez ograniczeń w celu rozwinięcia inteligencji obejmującej wiele dziedzin. Jeżeli zostanie wprowadzona, maszyny będą dysponowały dużo większym zasobem informacji: kiedy jeden samochód autonomiczny wyciągnie wniosek z błędu, pozostałe samochody w sieci nauczą się tego samego. A kiedy człowiek spowoduje wypadek, ktoś inny nie wyciągnie z niego wniosków. Maszyny będą miały dużo więcej możliwości nauki, będą mogły czerpać z większej bazy danych zawierającej wiedzę – twierdzi ekspert.

Duże nadzieje w rozwoju systemów sztucznej inteligencji pokłada także firma Google, która szkoli swój algorytm AlphaStar na grze StarCraft II. Korporacji udało się dopracować ją do tego stopnia, że jest w stanie wygrać 99,8 proc. punktowanych rozgrywek. AlphaStar jest pierwszą sztuczną inteligencją, która osiągnęła poziom arcymistrzowski w StarCraft II. Tymczasem podczas gry nie wykorzystuje w pełni swojego potencjału – aby wyrównać szanse, twórcy ograniczyli szybkość jej interakcji z interfejsem. AlphaStar może wydawać do 22 komend w ciągu pięciu sekund, co upodabnia ją do zawodowych graczy. Gdyby znieść to ograniczenie, byłaby jeszcze skuteczniejsza.

Google wykorzystuje SI we wszystkich swoich produktach. Algorytmy uczenia maszynowego znajdziemy w wyszukiwarce, filtrze antyspamowym Gmaila czy reklamach AdSense, które dostosowują wyświetlane treści do użytkownika i uczą się jego preferencji. Firma powołała do życia także projekt TensorFlow, otwarty framework sztucznej inteligencji, który pozwala zewnętrznym firmom wykorzystywać technologię uczenia maszynowego do analizowania dużych zbiorów informacji.

– Zasoby Google i całego internetu staną się źródłem wiedzy niezbędnej do rozwiązania poważnych problemów przez maszyny. Być może odpowiedź na globalne ocieplenie i zmiany klimatyczne leży w czymś więcej niż tylko zmianie naszych nawyków, stanowiącej jeden z fundamentalnych rozwiązań tego problemu. Może rozwiązania należy szukać po trochu w chemii, w połączeniu ze zrozumieniem pewnych zagadnień z zakresu fizyki kwantowej czy filozofii. Jedna osoba nie jest w stanie tego połączyć, a maszyna wykorzystująca sztuczną inteligencję ma taką umiejętność – twierdzi Mo Gawdat.

Według analityków z firmy Verified Market Research wartość globalnego rynku uczenia maszynowego w 2018 roku wyniosła 3,02 mld dol. Przewiduje się, że do 2026 roku wzrośnie do 26,64 mld dol. przy średniorocznym tempie wzrostu na poziomie 41,5 proc.

ZOSTAW ODPOWIEDŹ

Prosimy wpisz swój komentarz!
Prosimy podaj swoje imię tutaj.